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‘-I- INTRODUCTION '

Shape optimization :  minimize an objective function over a set of
admissibles shapes (including possible constraints)

1,20

The objective function is evaluated through a partial di er ential equation
(state equation) ve

J() = J(u )dx
whereu IS the solution of
PDE(u )=0 In

Thickness optimization : the shape is parametrized by its thicknessh (a
coe cient in the p.d.e.).

Geometric optimization the boundary of is varying.
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| Thickness optimization (a brief review)

Mid-plane RY with boundary @= N[ b.

Thickness of the plateh(x) : ! [Nmin ; Dmax ] With hmax > hmin > 0.
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| Thickness optimization (Ctd.)

For given applied loadsg: N ! RY,f: ! RY, the displacement

u: ! RYis the solution of
8
3 div(hAe(u))=1f in

3 u=0 on p
" hAe(u) n=g on

with the strain tensor e(u) = %(r u+ r tu), the stress tensor = hAe(u), and
A an homogeneous isotropic elasticity tensor.

Typical objective function: the compliance
Z Z

J(h) = f udx+ g udx;

N
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| Adjoint approach to compute a gradient |

Z
Theorem. The derivative of the cost function J(h) = ] u(h) dxis

JAn)y=ru rp;

where p is the adjoint state de ned as the unique solution of
8
3 div(hrp= j%u) in

p=0 on p

hAe(p) n=g¢ N -

2

Remark: for the compliancep= u.

Worst-case design in shape optimization G. Allaire



| Numerical algorithm: projected gradient |

1. Initialization of the thicknesshg 2 Ugg.

2. lterations until convergence, forn 0: compute the stateu, and the
adjoint p, (associated to the thicknessh,) and update

J %) with  J%hy)=ruy topn:

where > 0 Is a descent step.

The admissible set of thicknesses is:
Z

Ug= h2 Lt () 5 DNmax h(x) hmn >0iIn ; h(x) dx = hoj |

Pu_, IS the projection operator de ned by:

ad

Pu,, () (X) = max( hmin ; Min (hmax ; h(X) + 7))

R
where * is the unique Lagrange multiplier such that Py, (h) dx = hgj j:
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| Geometric optimization (a brief review)

Shape RY with boundary @ = p;, Wwhere p and p are xed.
Only is optimized (free boundary) .
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| Geometric optimization (Ctd.)

For given applied loadsg: N ! RY,f: | RY the displacement
u: ! RYisthe solution of

% dlv(Ae(u))—f in

on p

Typical objective function: the compliance
Z Z

J()= f udx+ g udx;

N
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| Shape derivative: Hadamard's method

Let o be areference domain. Shapes are parametrized byvactor eld

=(ld+ ) o with 2 CY{(RY;RY):

Wo  oemmmTmmm- > (O

-

De nition:  the shape derivative ofJ() at ¢ Is the Fechet di erential of
1 J (ld+ ) o atO.
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| Shape derivative |

Hadamard structure theorem: the shape derivative ofJ () can always be

written (in a distributional sense)
Z

IA o)( )= (x) n(x)J(x)ds

@ o

where | (x) Is an integrand depending on the stateu and an adjoint p.

Gradient algorithm: a descent direction is (x) = | (X) n(x).

Shape derivative of the compliance;j (x) = = Ae(u) e(u) where is a
Lagrange multiplier for the volume constraint.
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| Additional ingredient: the level set method

Due to Osher and Sethian, it allows topology changes.
Shape capturing method on a xed mesh of the \working domain" D.

A shape is parametrized by a level set function

8
3 (xX)=0 , x2@\D

(x) <0 , x2
(x)>0 , x2(Dn)

>

Assume that the shape (t) evolves in timet with a normal velocity V (t; x).
Then its motion is governed by the following Hamilton Jacobi equation

%t+er «x ]=0 in D:

To minimize the objective function J(), the velocity V is minus the shape
gradient | .
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| Example of a level set function
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INUMERICAL ALGORITHM

1. Initialization of the level set function ¢ (including holes).

2. lteration until convergence fork 1:

(a) Compute the elastic displacementuy for the shape .
Deduce the shape gradient = normal velocity =V

(b) Advect the shape with Vi (solving the Hamilton Jacobi equation) to
obtain a new shape .1 .

For numerical examples, see the web page:

http://www.cmap.polytechnique.fr/~optopo/level _en.html
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‘-II- ABOUT UNCERTAINTIES '

+ |ocation, magnitude and orientation of the body forces or suface loads
+ elastic material's properties
+ geometry of the shape (thickness or boundary)

Crucial issue: optimal structures are so optimal for a given set of loads tha
they cannot sustain a di erent load !
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| Example: minimal weight and minimal compliance|

Allowed
perturbations

TOZ uoneley

T

Source term f
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| Optimal design with load uncertainties |
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| State of the art: many works ! |

Probabillistic approach (Ben-Tal et al. 97, Chol et al. 2007,
Frangopol-Maute 2003, Kalsi et al. 2001...)

Monte-Carlo methods

Polynomial chaos, Karhunen-Lceve expansions...
First-Order Reliability-based Methods (FORM)

Various objectives or goals:
Minimization of expected value or mean
Worst case desing
Minimal failure probability

Special cases with simpli cations:

Robust compliance: Cherkaev-Cherkaeva (1999, 2003), de
Gournay-Allaire-Jouve (2008).

Mean expectation of compliance: Alvarez-Carrasco 2005,
Dunning-Kim 2013...
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+ Present work: two main ideas

worst case optimization (min-max problem),

linearization for small uncertainties (similar idea in
Babuska-Nobile-Tempone 2005).
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| Worst case design

Example in the case of force uncertainties.
The force is the sumf + wheref is known and is unknown.

The only information is the location of and its maximal magnitude m > 0O
such thatk k m.

We replace the standard objective functiond( ;f + ) by its worst case
versiondJ ( ;).

Worst case design optimization problem:

minJ ( ;f)=min max J( ;f + )
k k m
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-l1I- ABSTRACT (AND FORMAL) SETTING I

Designsh 2 H

State equation A(h)u(h) = b with a linear operator A(h)
Perturbations 2 P in a Banach spaceP

Assume for simplicity that only b (not A) depends on
Perturbed state equation A(h)u(h; )= b( )

Worst case objective function

J(h)y= sup J(u(h;))

i ip m

i3
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| Linearization |

Assume that the perturbations are small, i.e.,m << 1.
+ Unperturbed case =0, u(h)= u(h;0)

+ Derivative of the state equation
@ db
A(h)—=(h;0)= —(O
(M) g 0= )
+ Linearization of the worst-case objective function

I BM= sup I+ T(uh) 2 o))

i iip m

Since the right hand side is linear in we deduce

B dJ @y,
F(h) = J(u(h)) + m m(u(h))@%hﬁ) i
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| Adjoint approach|

The previous formula for F(h) is not fully explicit:

_ dJ @u,
F(h) = I(u(h)+ m —=(u(h)) @Lzh,O) i

Introduce an adjoint state

AT p(h) = S (u(h));

from which we deduce

d db
AT S0 = A() S 0) pihy = Tcuch) Sthio)= 0 pih)

Conclusion:

F(h) = J(u(h)) + m g—b(O) p(h)
P
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| Linearized worst-case desighn

We add to the usual objective function a perturbation term which is
proportional to m and to the standard adjoint p:

F(h)= J(u(h)) + m %(0) p(h)

P
Classical sensitivity approach can be applied ta¥(h)

The appearance of the adjoint is not a surprise: it is known tomeasure
the sensitivity of the optimal value with respect to the consraint level (or
right hand side in the state equation).

The entire argument needs to be made rigorous in each speci case.
We don't say anything about the existence of optimal designs

We don't prove that optimal designs for F(h) are close to those of] (h).
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| What remains to be done (in this talk) |

Linearized worst-case design optimization:

inf  ®(h)= J(u(h))+ m %(O) p(h)

h2H =

A(hyu(h) = b0) and A(h)"p(h)= %(U(h));

+ We compute a derivative of ¥(h): it requires two additional adjoints !
+ We build a gradient-based algorithm.

+ We test it on various objective functions.
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‘-IV- THICKNESS OPTIMIZATION '

First case: loading uncertainties.

Given load f 2 L?() 9. Unknown load 2 L?() ¢ with small norm
K KLz(y « m. Solution uy, of

8
3 div(hAe(uy )= f +

Up. =0 on p

4

hAe(uy. ) n=d on n

Many variants are possible ( may be localized, or parallel to a xed vector, or
on \, etc.)
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Given a smooth (+ growth conditions) integrand j, consider
Z

J(h; )= J(;up )dx
Worst case design objective function:

J(Mh)y= sup J(h;)
2L2() d
G2 a m

Linearized worst case design objective function:

_ . @J, .
F(h) = | ZsLlig d J(h;0) + @f(h,O)( )
1l JJL2() d m

Worst-case design in shape optimization G. Allaire



V4
P(h)= [(0;un) dx+ mir ¢jO;un) Pri zq) e

where py, Is the rst adjoint state, de ned by

8

3 div(hAe(pn)) r ujOup) in
Ph 0 on p;

3
' hAe(pr)n 0 on n:

If r +j(O;up) pn60in L?() 9, then P is Fechet di erentiable
Z

FUh)(s) =  D(Un;pn;th;zn) s dx;

with two additional adjoints ¢, ;z, and

Ae(un) : e(zn) + Ae(pn) : e(th)
2”r fj(o; uh) phijZ() d

D(Unh;pPn;h;Zn) := Ae(un) i elpr) + M
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The second and third adjoint statesq,; z, are de ned by
8
3 div(hAe(h)) =  2(n r J(Oun)) In

Ch 0 on p;

hAe(g, )n 0 on n;

4

div(hAe(zn)) =  2r¢ruj(un)" (r¢j(un) pn) r Gi(un)oh in
Zn 0) on p,

hAe(zn)n = O on -
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Second case: thickness uncertainties.

Given thicknessh 2 L* (). Uncertainty s2 L* () with ksk.:( — m.

8

5 div((h+ s)Ae(up+s)) = f N

3 Uh+s =0 on p
. (h+ s)Ae(un+s) N=g¢ N

Worst case design objective function:

Z
J(h)y= sup J(h+s8)= J(un+s)dx

s2L1 ()

Linearized worst case design objective function:

_ @J
B(hy= sup I+ ()
ksk 1 0 m
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Theorem.

Z
B(h)= j(un)dx+ mijjAe(un) : e(Pn)ii sy ;

where py, Is the rst adjoint state, de ned by
8

3 div(hAe(pn)) = r uJ(up) N
bh = 0 on p

3
' hAe(ph)n = O on n

If E, ;== fx2 ; Ae(un): epn) =09 has zero Lebesgue measure, theR is

di erentiable
Z

FUh)(s)= s Ae(un):e(pn)+ m Ae(pn): e(th)+ Ae(un): e(zn) dx;

with two additional adjoint states ¢ ; zn.
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INUMERICAL ALGORITHM

1. Initialization of the thickness hy.

2. lteration until convergence fork 1:

(a) Computation of uyx and the 3 adjoints pg; 0k; zk by solving linearized

elasticity problem with the thickness hy. Evaluation of the gradient
FYhy)

(b) Update of the thickness hy,+1; by a projected gradient step (to satisfy
bounds and volume constraint).

All computations are made with FreeFem++.
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| Load uncertainties in thickness optimization

Compliance minimization

Z
J(h; )= (f+ ) un dx

with a xed volume constraint
Z

Vol(h) := hdx =0:7
Rectangular 2 1 domain. Boundshpi, =0:1 and hpax = 1.
Material properties E =1; =0:3.

We compute optimal designs for increasing values a.
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| Load uncertainties in thickness optimization

5 5000 <01
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-V- GEOMETRIC OPTIMIZATION I

First case: loading uncertainties.

Given load f 2 L?(R%)9. Unknown load 2 L?(R%)Y with small norm
K KL2(raya M. Solution u . of

% dlv(Ae(u )= f + in

n=g9g on N

=0 on

Many variants are possible ( may be localized, or parallel to a xed vector, or
on y, etc.)
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Theorem.
Z

FO = jOu )dx+mjr ¢jOu ) p Lz e

wherep Is the rst adjoint state, de ned by
8
3 div(Ae(p )) = r 4j(Ou) in ;

p =0 on p;

Ae(p )n = O on [ n:

3

Ifr¢j(O;u ) p 60in L?() 9, then F is shape di erentiable (with two
additional adjoint states).
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Second case: geometric uncertainties.

Perturbed shapes (I + V )() ; V2 WY (REGRY); jiViiL: (roye

IS a smooth localizing function such that Ooon p[ ~n.
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Theorem.

The linearized worst-case design objective function is
Z Z

F() = J(u)dx+m J(u )+ Ae(u ) ep) f p ds

where p is the (previous) adjoint state.

fE =fx2 ; (j(u )+ Ae(u ):e(p) f p )(x)=0ghas zero Lebesgue
measure, then it admits a (hugly) shape derivative % )( ) involving two
(new) additional adjoints q ;z .
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| Load uncertainties in geometric optimization (compliance
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| Load uncertainties in geometric optimization (compliance
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| Geometric uncertainties in geometric optimization
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| Geometric uncertainties (stress minimization)
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‘-VI- REVIEW OF THE ROBUST COMPLIANCE '

Based on the works of Cherkaev-Cherkaeva (1999, 2003), ancd
Gournay-Allaire-Jouve (2008).

No linearization in this case !

Restricted to the compliance because
Z Z Z

Ae(v) elv)dx 2 g vds

N

Ae(u)y n=g
Ae(u) n=0
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| ROBUST COMPLIANCE |

Known forces: g. Uncertainties: g.
Classical min-max approach

We minimize the worst case
Z

J()=max  cg+ g)=  (g+ g) uds

N

under the constraint Kk gk m and possibly some restriction on its support.

Evaluating J() Is a "trust region"zproblem.

In the sequel we choosé& gk? = j gj%ds.

N
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| Rewriting the robust compliance|

Z
g+ g)=  (g+ g) uds

N

Z Z

v:orrc')lﬂ i Ae(v) ev)dx 2 N(g+ g) vds

Since ( min) = (max ), the two maximizations can be exchanged
Z Z

max c(g+ g) = m8>r§ Ae(v) e(v)dx+2 ml?x (g+ g) vds
m N

kgk m v=0 D kg

The robust compliance is thus obtained by maximizing a non-giadratic and

non-concave energy
L VA

kmkax c(g+ g)= Ae(v) e(v)dx+2 g vds+2mkvk
gk m N
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| Special case

If g=0, then it is an eigenvalue problem. Indeed,
Z

. gnl(axm cO+ g)= Vzomca)\)rg i Ae(v) e(v)dx+2mkvk

This is the Auchmuty variational principle for

8
% div(Ae(u)) =0 in

u=20 on p

E Ae(u) n= u N
Ae(u) n=0

Worst-case design in shape optimization G. Allaire



| DERIVATIVE OF THE ROBUST COMPLIANCE

Z Z
Ae(v) elv)dx+2 g vds+2mkvk

N

If the maximizer of E (V) is unique, then proceeds as usual to di erentiate.

If the maximizer of E(v) is not unique, then one can merely deduce a
directional derivative (one for each eigenfunction).

In this latter case, the "best" descent direction is chosen lg a SDP algorithm.
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| NUMERICAL RESULTS |

Allowed
perturbations

-0

/

Source term f

Results obtained with F. de Gournay and F. Jouve.
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| Vertical perturbations only |
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| Horizontal and vertical perturbations |

Worst-case design in shape optimization G. Allaire



Worst-case design in shape optimization G. Allaire



