
1

A LINEARIZED APPROACH

TO WORST-CASE DESIGN

IN SHAPE OPTIMIZATION

Gr�egoire ALLAIRE
CMAP, Ecole Polytechnique

Joint work with Ch. Dapogny (LJK, Grenoble).

GDR MASCOT-NUM, Saint-Etienne, April 9th, 2015.

Worst-case design in shape optimization G. Allaire



2

RODIN project

Ecole Polytechnique,

UPMC, INRIA,

Renault, EADS,

ESI group, etc.

1. Introduction and a briel review of optimal design.

2. About uncertainties in optimal design.

3. Abstract setting for linearized worst-case design.

4. Applications in thickness optimization.

5. Applications in geometric optimization.

6. A short review of the robust compliance case.

Worst-case design in shape optimization G. Allaire



3

-I- INTRODUCTION

Shape optimization : minimize an objective function over a set of
admissibles shapes 
 (including possible constraints)

inf

 2U ad

J (
)

The objective function is evaluated through a partial di�er ential equation
(state equation)

J (
) =
Z



j (u
 ) dx

where u
 is the solution of

P DE (u
 ) = 0 in 


Thickness optimization : the shape is parametrized by its thicknessh (a
coe�cient in the p.d.e.).

Geometric optimization : the boundary of 
 is varying.
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�

�

�

�
Thickness optimization (a brief review)

Mid-plane 
 � Rd with boundary @
 = � N [ � D .

Thickness of the plateh(x) : 
 ! [hmin ; hmax ] with hmax > h min > 0.
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�

�

�

�
Thickness optimization (Ctd.)

For given applied loadsg : � N ! Rd, f : 
 ! Rd, the displacement
u : 
 ! Rd is the solution of

8
>><

>>:

� div (hA e(u)) = f in 


u = 0 on � D
�
hA e(u)

�
n = g on � N

with the strain tensor e(u) = 1
2 (r u + r t u), the stress tensor� = hAe(u), and

A an homogeneous isotropic elasticity tensor.

Typical objective function: the compliance

J (h) =
Z



f � u dx +

Z

� N

g � u dx;
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�

�

�

�Adjoint approach to compute a gradient

Theorem. The derivative of the cost function J (h) =
Z



j
�
u(h)

�
dx is

J 0(h) = r u � r p ;

where p is the adjoint state de�ned as the unique solution of
8
>><

>>:

� div (hr p) = � j 0(u) in 


p = 0 on � D
�
hA e(p)

�
n = g on � N :

Remark: for the compliancep = � u.
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�

�

�

�Numerical algorithm: projected gradient

1. Initialization of the thicknessh0 2 Uad .

2. Iterations until convergence, forn � 0: compute the stateun and the
adjoint pn (associated to the thicknesshn ) and update

hn +1 = PUad

�
hn � �J 0(hn )

�
with J 0(hn ) = r un � r pn ;

where � > 0 is a descent step.

The admissible set of thicknesses is:

Uad =
�

h 2 L 1 (
) ; hmax � h(x) � hmin > 0 in 
 ;
Z



h(x) dx = h0j
 j

�
:

PUad is the projection operator de�ned by:
�

PUad (h)
�

(x) = max ( hmin ; min (hmax ; h(x) + `))

where ` is the unique Lagrange multiplier such that
R


 PUad (h) dx = h0j
 j:
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�

�

�

�
Geometric optimization (a brief review)

Shape 
 � Rd with boundary @
 = � [ � N [ � D ; where � D and � N are �xed.
Only � is optimized (free boundary) .
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�

�

�

�
Geometric optimization (Ctd.)

For given applied loadsg : � N ! Rd, f : 
 ! Rd, the displacement
u : 
 ! Rd is the solution of

8
>>>>><

>>>>>:

� div (A e(u)) = f in 


u = 0 on � D
�
A e(u)

�
n = g on � N

�
A e(u)

�
n = 0 on �

Typical objective function: the compliance

J (
) =
Z



f � u dx +

Z

� N

g � u dx;
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�

�

�

�Shape derivative: Hadamard's method

Let 
 0 be a reference domain. Shapes are parametrized by avector �eld �


 = ( Id + � )
 0 with � 2 C1(Rd; Rd):

x

W

x+  (x)q

0
  d 0(I  +q)W

De�nition: the shape derivative ofJ (
) at 
 0 is the Fr�echet di�erential of
� ! J

�
( Id + � )
 0

�
at 0.
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�

�

�

�
Shape derivative

Hadamard structure theorem: the shape derivative ofJ (
) can always be
written (in a distributional sense)

J 0(
 0)( � ) =
Z

@
 0

� (x) � n(x) j (x) ds

where j (x) is an integrand depending on the stateu and an adjoint p.

Gradient algorithm: a descent direction is� (x) = � j (x) n(x).

Shape derivative of the compliance:j (x) = ` � Ae(u) � e(u) where ` is a
Lagrange multiplier for the volume constraint.
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�

�

�

�Additional ingredient: the level set method

Due to Osher and Sethian, it allows topology changes.

Shape capturing method on a �xed mesh of the \working domain" D .

A shape 
 is parametrized by a level set function
8
>><

>>:

 (x) = 0 , x 2 @
 \ D

 (x) < 0 , x 2 


 (x) > 0 , x 2 (D n 
)

Assume that the shape 
( t) evolves in time t with a normal velocity V (t; x ).
Then its motion is governed by the following Hamilton Jacobi equation

@ 
@t

+ V jr x  j = 0 in D:

To minimize the objective function J (
), the velocity V is minus the shape
gradient j .

Worst-case design in shape optimization G. Allaire
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�

�

�

�Example of a level set function
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�

�

�

�NUMERICAL ALGORITHM

1. Initialization of the level set function  0 (including holes).

2. Iteration until convergence for k � 1:

(a) Compute the elastic displacementuk for the shape k .

Deduce the shape gradient = normal velocity = Vk

(b) Advect the shape with Vk (solving the Hamilton Jacobi equation) to
obtain a new shape k+1 .

For numerical examples, see the web page:

http://www.cmap.polytechnique.fr/~optopo/level en.html

Worst-case design in shape optimization G. Allaire
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-II- ABOUT UNCERTAINTIES

+ location, magnitude and orientation of the body forces or surface loads

+ elastic material's properties

+ geometry of the shape (thickness or boundary)

Crucial issue: optimal structures are so optimal for a given set of loads that
they cannot sustain a di�erent load !

Worst-case design in shape optimization G. Allaire
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�

�Example: minimal weight and minimal compliance
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Allowed 

Source term f

perturbations

Itâration  201
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�

�

�

�Optimal design with load uncertainties
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�

�

�

�State of the art: many works !

+ Probabilistic approach (Ben-Tal et al. 97, Choi et al. 2007,
Frangopol-Maute 2003, Kalsi et al. 2001...)

� Monte-Carlo methods

� Polynomial chaos, Karhunen-Lo�eve expansions...

� First-Order Reliability-based Methods (FORM)

+ Various objectives or goals:

� Minimization of expected value or mean

� Worst case desing

� Minimal failure probability

+ Special cases with simpli�cations:

� Robust compliance: Cherkaev-Cherkaeva (1999, 2003), de
Gournay-Allaire-Jouve (2008).

� Mean expectation of compliance: Alvarez-Carrasco 2005,
Dunning-Kim 2013...

Worst-case design in shape optimization G. Allaire
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+ Present work: two main ideas

� worst case optimization (min-max problem),

� linearization for small uncertainties (similar idea in
Babuska-Nobile-Tempone 2005).

Worst-case design in shape optimization G. Allaire
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�

�

�

�Worst case design

Example in the case of force uncertainties.

The force is the sumf + � where f is known and � is unknown.

The only information is the location of � and its maximal magnitude m > 0
such that k� k � m.

We replace the standard objective functionJ (
 ; f + � ) by its worst case
version J (
 ; f ).

Worst case design optimization problem:

min



J (
 ; f ) = min



max
k� k� m

J (
 ; f + � )

Worst-case design in shape optimization G. Allaire
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-III- ABSTRACT (AND FORMAL) SETTING

+ Designsh 2 H

+ State equation A(h)u(h) = b with a linear operator A(h)

+ Perturbations � 2 P in a Banach spaceP

+ Assume for simplicity that only b (not A) depends on�

+ Perturbed state equation A(h)u(h; � ) = b(� )

+ Worst case objective function

J (h) = sup
� 2P

jj � jj P � m

J (u(h; � ))

+ Goal

inf
h2H

J (h)

Worst-case design in shape optimization G. Allaire
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�

�

�

�Linearization

Assume that the perturbations are small, i.e.,m << 1.

+ Unperturbed case� = 0, u(h) = u(h; 0)

+ Derivative of the state equation

A(h)
@u
@�

(h; 0) =
db
d�

(0)

+ Linearization of the worst-case objective function

J (h) � eJ (h) = sup
� 2P

jj � jj P � m

�
J (u(h)) +

dJ
du

(u(h))
@u
@�

(h; 0)(� )
�

Since the right hand side is linear in� we deduce

eJ (h) = J (u(h)) + m

�
�
�
�

�
�
�
�
dJ
du

(u(h))
@u
@�

(h; 0)

�
�
�
�

�
�
�
�
P �

Worst-case design in shape optimization G. Allaire
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�

�

�

�Adjoint approach

The previous formula for eJ (h) is not fully explicit:

eJ (h) = J (u(h)) + m

�
�
�
�

�
�
�
�
dJ
du

(u(h))
@u
@�

(h; 0)

�
�
�
�

�
�
�
�
P �

Introduce an adjoint state

A(h)T p(h) =
dJ
du

(u(h)) ;

from which we deduce

A(h)T p(h)�
@u
@�

(h; 0) = A(h)
@u
@�

(h; 0) � p(h) =
dJ
du

(u(h)) �
@u
@�

(h; 0) =
db
d�

(0) � p(h)

Conclusion:

eJ (h) = J (u(h)) + m

�
�
�
�

�
�
�
�
db
d�

(0) � p(h)

�
�
�
�

�
�
�
�
P �

Worst-case design in shape optimization G. Allaire



24

�

�

�

�Linearized worst-case design

We add to the usual objective function a perturbation term which is
proportional to m and to the standard adjoint p:

eJ (h) = J (u(h)) + m

�
�
�
�

�
�
�
�
db
d�

(0) � p(h)

�
�
�
�

�
�
�
�
P �

+ Classical sensitivity approach can be applied to eJ (h)

+ The appearance of the adjoint is not a surprise: it is known tomeasure
the sensitivity of the optimal value with respect to the constraint level (or
right hand side in the state equation).

+ The entire argument needs to be made rigorous in each speci�ccase.

+ We don't say anything about the existence of optimal designs.

+ We don't prove that optimal designs for eJ (h) are close to those ofJ (h).

Worst-case design in shape optimization G. Allaire
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�

�

�

�
What remains to be done (in this talk)

Linearized worst-case design optimization:

inf
h2H

�
eJ (h) = J (u(h)) + m

�
�
�
�

�
�
�
�
db
d�

(0) � p(h)

�
�
�
�

�
�
�
�
P �

�

where

A(h)u(h) = b(0) and A(h)T p(h) =
dJ
du

(u(h)) ;

+ We compute a derivative of eJ (h): it requires two additional adjoints !

+ We build a gradient-based algorithm.

+ We test it on various objective functions.

Worst-case design in shape optimization G. Allaire
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-IV- THICKNESS OPTIMIZATION

First case: loading uncertainties.

Given load f 2 L 2(
) d. Unknown load � 2 L 2(
) d with small norm
k� kL 2 (
) d � m. Solution uh;� of

8
>><

>>:

� div (hA e(uh;� )) = f + � in 


uh;� = 0 on � D
�
hA e(uh;� )

�
n = g on � N

Many variants are possible (� may be localized, or parallel to a �xed vector, or
on � N , etc.)

Worst-case design in shape optimization G. Allaire
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Given a smooth (+ growth conditions) integrand j , consider

J (h; � ) =
Z



j (�; u h;� ) dx

Worst case design objective function:

J (h) = sup
� 2 L 2 (
) d

jj � jj
L 2 (
) d � m

J (h; � )

Linearized worst case design objective function:

eJ (h) = sup
� 2 L 2 (
) d

jj � jj
L 2 (
) d � m

�
J (h; 0) +

@J
@f

(h; 0)(� )
�

Worst-case design in shape optimization G. Allaire
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Theorem.

eJ (h) =
Z



j (0; uh ) dx + m jjr f j (0; uh ) � ph jjL 2 (
) d ;

where ph is the �rst adjoint state, de�ned by
8
>><

>>:

� div(hAe(ph )) = �r u j (0; uh ) in 
 ;

ph = 0 on � D ;

hAe(ph )n = 0 on � N :

If r f j (0; uh ) � ph 6= 0 in L 2(
) d, then eJ is Fr�echet di�erentiable

eJ 0(h)(s) =
Z



D(uh ; ph ; qh ; zh ) s dx;

with two additional adjoints qh ; zh and

D(uh ; ph ; qh ; zh ) := Ae(uh ) : e(ph ) + m
Ae(uh ) : e(zh ) + Ae(ph ) : e(qh )

2 jjr f j (0; uh ) � ph jjL 2 (
) d

Worst-case design in shape optimization G. Allaire
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The second and third adjoint statesqh ; zh are de�ned by
8
>><

>>:

� div(hAe(qh )) = � 2 (ph � r f j (0; uh )) in 
 ;

qh = 0 on � D ;

hAe(qh )n = 0 on � N ;

8
>><

>>:

� div(hAe(zh )) = � 2 r f r u j (uh )T (r f j (uh ) � ph ) � r 2
u j (uh )qh in 
 ;

zh = 0 on � D ;

hAe(zh )n = 0 on � N :

Worst-case design in shape optimization G. Allaire
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Second case: thickness uncertainties.

Given thicknessh 2 L 1 (
). Uncertainty s 2 L 1 (
) with kskL 1 (
) � m.
8
>><

>>:

� div (( h + s)A e(uh+ s)) = f in 


uh+ s = 0 on � D
�
(h + s)A e(uh+ s)

�
n = g on � N

Worst case design objective function:

J (h) = sup
s 2 L 1 (
)

k s k L 1 (
) � m

�
J (h + s) =

Z



j (uh+ s) dx

�

Linearized worst case design objective function:

eJ (h) = sup
s 2 L 1 (
)

k s k L 1 (
) � m

�
J (h) +

@J
@h

(h)(s)
�

Worst-case design in shape optimization G. Allaire
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Theorem.

eJ (h) =
Z



j (uh ) dx + m jjAe(uh ) : e(ph )jjL 1 (
) ;

where ph is the �rst adjoint state, de�ned by
8
>><

>>:

� div(hAe(ph )) = �r u j (uh ) in 


ph = 0 on � D

hAe(ph )n = 0 on � N

:

If Eh := f x 2 
 ; Ae(uh ) : e(ph ) = 0 g has zero Lebesgue measure, theneJ is
di�erentiable

eJ 0(h)(s) =
Z



s
�

Ae(uh ) : e(ph ) + m
�

Ae(ph ) : e(qh ) + Ae(uh ) : e(zh )
��

dx;

with two additional adjoint states qh ; zh .

Worst-case design in shape optimization G. Allaire
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�

�

�

�NUMERICAL ALGORITHM

1. Initialization of the thickness h0.

2. Iteration until convergence for k � 1:

(a) Computation of uk and the 3 adjoints pk ; qk ; zk by solving linearized
elasticity problem with the thickness hk . Evaluation of the gradient
eJ 0(hk )

(b) Update of the thickness hk+1 by a projected gradient step (to satisfy
bounds and volume constraint).

All computations are made with FreeFem++.

Worst-case design in shape optimization G. Allaire
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�

�

�

�Load uncertainties in thickness optimization

Compliance minimization

J (h; � ) =
Z



(f + � ) � uh;� dx

with a �xed volume constraint

Vol( h) :=
Z



h dx = 0 :7

Rectangular 2� 1 domain. Boundshmin = 0 :1 and hmax = 1.

Material properties E = 1 ; � = 0 :3.

We compute optimal designs for increasing values ofm.

Worst-case design in shape optimization G. Allaire
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�

�

�

�Load uncertainties in thickness optimization

Worst-case design in shape optimization G. Allaire
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-V- GEOMETRIC OPTIMIZATION

First case: loading uncertainties.

Given load f 2 L 2(Rd)d. Unknown load � 2 L 2(Rd)d with small norm
k� kL 2 (Rd )d � m. Solution u
 ;� of

8
>>>>><

>>>>>:

� div (A e(u
 ;� )) = f + � in 


u
 ;� = 0 on � D
�
A e(u
 ;� )

�
n = g on � N

�
A e(u
 ;� )

�
n = 0 on �

Many variants are possible (� may be localized, or parallel to a �xed vector, or
on � N , etc.)

Worst-case design in shape optimization G. Allaire
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Theorem.

eJ (
) =
Z



j (0; u
 ) dx + mjjr f j (0; u
 ) � p
 jjL 2 (
) d ;

where p
 is the �rst adjoint state, de�ned by
8
>><

>>:

� div(Ae(p
 )) = �r u j (0; u
 ) in 
 ;

p
 = 0 on � D ;

Ae(p
 )n = 0 on � [ � N :

If r f j (0; u
 ) � p
 6= 0 in L 2(
) d, then eJ is shape di�erentiable (with two
additional adjoint states).

Worst-case design in shape optimization G. Allaire
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Second case: geometric uncertainties.

Perturbed shapes (I + �V )(
) ; V 2 W 1;1 (Rd; Rd); jjV jjL 1 (Rd )d � m:

� is a smooth localizing function such that � � 0 on � D [ � N .

Worst-case design in shape optimization G. Allaire
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Theorem.

The linearized worst-case design objective function is

eJ (
) =
Z



j (u
 ) dx + m

Z

�
�

�
�
� j (u
 ) + Ae(u
 ) : e(p
 ) � f � p


�
�
� ds;

where p
 is the (previous) adjoint state.

If E � := f x 2 � ; (j (u
 ) + Ae(u
 ) : e(p
 ) � f � p
 ) (x) = 0 g has zero Lebesgue
measure, then it admits a (hugly) shape derivative eJ 0(
)( � ) involving two
(new) additional adjoints q
 ; z
 .

Worst-case design in shape optimization G. Allaire
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�

�

�

�
Load uncertainties in geometric optimization (compliance )

Worst-case design in shape optimization G. Allaire
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�

�

�
Load uncertainties in geometric optimization (compliance )

Worst-case design in shape optimization G. Allaire
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�

�

�

�Geometric uncertainties in geometric optimization

Worst-case design in shape optimization G. Allaire
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�

�

�

�
Geometric uncertainties (stress minimization)
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-VI- REVIEW OF THE ROBUST COMPLIANCE

Based on the works of Cherkaev-Cherkaeva (1999, 2003), and de
Gournay-Allaire-Jouve (2008).

No linearization in this case !

Restricted to the compliance because

J (
) =
Z

� N

g � u ds = � min
v=0 on � D

� Z



A e(v) � e(v) dx � 2

Z

� N

g � v ds
�

with 8
>>>>><

>>>>>:

� div (A e(u)) = 0 in 


u = 0 on � D
�
A e(u)

�
n = g on � N

�
A e(u)

�
n = 0 on �

Worst-case design in shape optimization G. Allaire
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�
�

�
�ROBUST COMPLIANCE

Known forces: g. Uncertainties: �g .

Classical min-max approach :

We minimize the worst case

J (
) = max
�g

�
c(g + �g ) =

Z

� N

(g + �g ) � u ds
�

under the constraint k�g k � m and possibly some restriction on its support.

Evaluating J (
) is a "trust region" problem.

In the sequel we choosek�g k2 =
Z

� N

j�g j2ds.

Worst-case design in shape optimization G. Allaire
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�

�

�

�Rewriting the robust compliance

c(g + �g ) =
Z

� N

(g + �g ) � u ds

= � min
v=0 on � D

� Z



A e(v) � e(v) dx � 2

Z

� N

(g + �g ) � v ds
�

Since (� min) = (max � ), the two maximizations can be exchanged

max
k�g k� m

c(g+ �g ) = max
v=0 on � D

�
�

Z



A e(v) � e(v) dx + 2 max

k�g k� m

Z

� N

(g + �g ) � v ds
�

The robust compliance is thus obtained by maximizing a non-quadratic and
non-concave energy

max
k�g k� m

c(g + �g ) = max
v=0 on � D

�
�

Z



A e(v) � e(v) dx + 2

Z

� N

g � v ds + 2mkvk
�

Worst-case design in shape optimization G. Allaire
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�

�

�

�Special case

If g = 0 , then it is an eigenvalue problem. Indeed,

max
k�g k� m

c(0 + �g ) = max
v=0 on � D

�
�

Z



A e(v) � e(v) dx + 2mkvk

�

This is the Auchmuty variational principle for
8
>>>>><

>>>>>:

� div (A e(u)) = 0 in 


u = 0 on � D
�
A e(u)

�
n = �u on � N

�
A e(u)

�
n = 0 on �

Worst-case design in shape optimization G. Allaire
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�
�

�
�DERIVATIVE OF THE ROBUST COMPLIANCE

J (
) = max
v=0 on � D

E(v) =
�

�
Z



A e(v) � e(v) dx + 2

Z

� N

g � v ds + 2mkvk
�

If the maximizer of E(v) is unique, then proceeds as usual to di�erentiate.

If the maximizer of E(v) is not unique, then one can merely deduce a
directional derivative (one for each eigenfunction).

In this latter case, the "best" descent direction is chosen by a SDP algorithm.
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�
�

�
�NUMERICAL RESULTS
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Allowed 

Source term f

perturbations

Results obtained with F. de Gournay and F. Jouve.
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�Vertical perturbations only
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�Horizontal and vertical perturbations
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